1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
2 years ago
11

As an object falls freely near the surface of the earth, its velocity?

Physics
1 answer:
Vsevolod [243]2 years ago
7 0

If it were possible for an object to fall freely near the surface of the Earth,

-- The direction of its velocity would always be "down"; that is, toward the center of the Earth.

-- The size of its velocity would continually increase, at the rate of 9.8 meters per second for every second it falls.

You might be interested in
Power is work done over a what?
melomori [17]
No the answer is energy 
4 0
3 years ago
What is the equivalent resistance of the
BigorU [14]

Answer:

Approximately 111\; {\rm \Omega}.

Explanation:

It is given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega} are connected in a circuit in parallel.

Assume that this circuit is powered with a direct current power supply of voltage V.

Since R_{1} and R_{2} are connected in parallel, the voltage across the two resistors would both be V. Thus, the current going through the two resistors would be (V / R_{1}) and (V / R_{2}), respectively.

Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor: I = (V / R_{1}) + (V / R_{2}).

In other words, if the voltage across this circuit is V, the total current in this circuit would be I = (V / R_{1}) + (V / R_{2}). The (equivalent) resistance R of this circuit would be:

\begin{aligned} R &= \frac{V}{I} \\ &= \frac{V}{(V / R_{1}) + (V / R_{2})} \\ &= \frac{1}{(1/R_{1}) + (1 / R_{2})}\end{aligned}.

Given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega}:

\begin{aligned} R &= \frac{1}{(1/R_{1}) + (1 / R_{2})} \\ &= \frac{1}{(1/(200\: {\rm \Omega})) + (1/(250\; {\rm \Omega}))} \\ &\approx 111\; {\rm \Omega}\end{aligned}.

7 0
1 year ago
Can someone help me figure out how to do a function formula for fx and fy
masha68 [24]

Answer: How to solve for FX and FY?

to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.

Explanation:

4 0
2 years ago
What is the formula for force?
Vitek1552 [10]
Choice 'b' is one possible way to state
Newton's second law of motion.

The other choices are meaningless.
8 0
3 years ago
If you push any floating object down from equilibrium and release it, it bobs up and down. That looks like an oscillation, so le
GarryVolchara [31]

Answer:

  F_{y} = ( ρ_fluid g A) y

Explanation:

This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force

for the first part, let's write Newton's equilibrium equation

        B₀ - W = 0

        B₀ = W

        ρ_fluid g V_fluid = W

the volume of the fluid is the area of ​​the cube times the height it is submerged

      V_fluid = A y  

For the second part, the body introduces a quantity and below this equilibrium point, the equation is

        B - W = m a

        ρ_fluid g A (y₀ + y) - W = m a

        ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a

       ρ_fluid g A y + (B₀-W) = ma

the part in parentheses is zero since it is the force when it is in equilibrium

      ρ_fluid g A y = m a

      this equation the net force is

      F_{y} = ( ρ_fluid g A) y

we can see that this force varies linearly the distance and measured from the equilibrium position

8 0
2 years ago
Other questions:
  • A mass weighing 32 pounds stretches a spring 2 feet. Determine the amplitude and period of motion if the mass is initially relea
    15·1 answer
  • In nature, hot air tends to rise and cool air tends to sink. This is behind the concept of convection heating that is used in ov
    8·2 answers
  • Accorrding to Kepler's third law, a planet whose distance from the Sun is 2 A.U. would have an orbital period of how many Earth-
    14·1 answer
  • A 2.5kg metal bar is quenched from 800°C by immersion in a closed insulated tank of water containing 50 litres of water initiall
    6·1 answer
  • How are particles in different state of matter?
    14·2 answers
  • Two electrons, each with mass mmm and charge qqq, are released from positions very far from each other. With respect to a certai
    9·1 answer
  • On a hot summer day, heat waves can be seen rising from the asphalt. What type of heat transfer do the heat waves demonstrate?
    10·1 answer
  • Joan makes the device shown in her science class. What would happen to the magnetic field if she connects the battery in the opp
    15·2 answers
  • The Sun appears to move across the sky during the day. The best explanation for this apparent motion is that Earth is
    7·2 answers
  • I will give brainliest to whoever is correct)<br>help, with this science question! thanks ^w^
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!