Answer:
Approximately
.
Explanation:
It is given that
and
are connected in a circuit in parallel.
Assume that this circuit is powered with a direct current power supply of voltage
.
Since
and
are connected in parallel, the voltage across the two resistors would both be
. Thus, the current going through the two resistors would be
and
, respectively.
Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor:
.
In other words, if the voltage across this circuit is
, the total current in this circuit would be
. The (equivalent) resistance
of this circuit would be:
.
Given that
and
:
.
Answer: How to solve for FX and FY?
to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.
Explanation:
Choice 'b' is one possible way to state
Newton's second law of motion.
The other choices are meaningless.
Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position