Answer:
distance = 21.56 m
Explanation:
given data
mass = 50 kg
initial velocity = 18.2 m/s
force = -200 N ( here force applied to opposite direction )
final velocity = 12.6 m/s
solution
we know here acceleration will be as
acceleration a = force ÷ mass
a =
= -4 m/s²
we get here now required time that is
required time =
...............1
put here value
required time =
so distance will be
distance =
........2
distance =
distance = 21.56 m
Kepler's hypothesis to describe the motions of the planets was derived from
the meticulous observations performed and recorded by Tycho Brahe.
Answer:
-5m/s
Explanation:
Since
acceleration=final velocity-initial velocity/time
2.5m/s^2=20m/s- initial velocity/10s
2.5m/s^2×10s= 20m/s -initial velocity
25m/s=20m/s - initial velocity
Initial velocity=20m/s-25m/s
= -5m/s
Explanation:
Use the magnitude and direction of each vector to find its components. Add the components that are along the same dimension. Then use Pythagorean theorem and trigonometry to find the magnitude and direction of the resultant vector.
For example, if we have a vector of magnitude A and direction α, and another vector of magnitude B and direction β, then the components of the first vector are:
Ax = A cos α
Ay = A sin α
And the components of the second vector are:
Bx = B cos β
By = B sin β
The resultant vector (we'll call it C) has components:
Cx = Ax + Bx
Cy = Ay + By
The magnitude of the resultant vector is:
C = √(Cx² + Cy²)
And the direction of the resultant vector is:
θ = atan(Cy/Cx)