If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses and whose respective velocities before collision are and ;
where and are their respective velocities after collision.
Given;
Note that =0 because the second mass was at rest before the collision.
Also, since the two masses are equal, we can say that so that equation (1) is reduced as follows;
m cancels out of both sides of equation (2), and we obtain the following;
a) When , we obtain the following by equation(3)
b) As stops moving , therefore,
The ball should put 200 N of force towards the golfer.
Newton's Third Law is every action has an equal and opposite reaction.
It's the ball exerting 200 N of force towards the club as well, but the opposite reaction is that it flies away.