Answer:
0.011 moles
Explanation:
There are about 6.02*10^23 atoms in a mole, so in the given sample, there are

which is about 0.011 moles.
<span>In a popular classroom demonstration, solid sodium is added to liquid water and reacts to produce hydrogen gas and aqueous sodium hydroxide. Balanced chemical equation for this reaction is given below.
Na-sodium , H2o- water, H-hydrogen gas and NaOH- aqueous sodium hydroxide.
Two atoms of Na react with two atoms of water and this reaction will give us H (hydrogen gas) and two atoms of NaOH (aqueous sodium hydroxide).
2Na + 2 H2o = H2 +2NaOH.</span>
Explanation:
Once solid ammonium nitrate interacts with water, the molecules of polar water intermingle with these ions and attract individual ions from the structure of the lattice, that actually will break down. E.g;-NH4NO3(s) — NH4+(aq)+ NO3-(aq) To split the ionic bonds that bind the lattice intact takes energy that is drained from the surroundings to cool the solution.
Some heat energy is produced once the ammonium and nitrate ions react with the water molecules (exothermic reaction), however this heat is far below that is needed by the H2O molecules to split the powerful ionic bonds in the solid ammonium nitrate.
Hence, we can say that the dissolution of ammonium nitrate in water is highly endothermic reaction.
Explanation:
It is given that vapor pressure of pure water at 296 K is 2778.5 Pa.These vapors will result in the formation of an ideal gas.
Now, as water is covered with oil and contains only 1% molecules of water. Hence, the vapor pressure of this mixture will also be equal to the vapor pressure of pure water.
So, vapor pressure of mixture = 1% vapor pressure of pure water
Therefore,
=
= 27.785 Pa
Thus, we can conclude that the equilibrium vapor pressure of water above the oil layer is 27.785 Pa.