The easiest way is to fill two very light globes, each with a different gas.
Blow globe 1 with gas from the cylinder marked with label 1, and blow glove 2 with gas from the cylinder marked with label 2.
If a globe ascends in the air, it is because its gas is less dense than air.
Inflate the globes quite enough to be sure that the mass of the rubber of the globe is not important relative to the mass of gas and so it does not change the results. If you obtain a result where the globe does not have a cliea ascending or descending motion, you can inflate more the globe and it shouuld start to rise if the gas really is less dense than air.
Biome is an open system because energy and matter are constantly being transferred in and out.
i hope this helped you..
:)
Answer: 56.44°
Explanation:
<u>Given:</u>
- Let u represent the current speed of the plane, <u>1.2 Mach</u>
<em>Converting to SI Units (m/s):</em>
= (1.2 mach)(340 ms^-1 / 1 Mach)
u = 408 m/s
- Speed of sound in air, v = 340 m/s
<u>Find:</u>
- Angle the wave front of the shock wave relative to the plane's direction of motion, θ
We have, sinθ = speed of sound / speed of object
sinθ = v / u
θ = sin^-1 (v / u)
= sin^-1 (340 / 408)
θ = 56.44°
Answer:
the first one is D
Explanation:
so if the others u put are right the the second would be c
Answer:
B = 1.353 x 10⁻³ T
Explanation:
The Magnetic field within a toroid is given by
B = μ₀ NI/2πr, where N is the number of turns of the wire, μ₀ is the permeability of free space, I is the current in each turn and r is the distance at which the magnetic field is to be determined from the center of the toroid.
To find r we need to add the inner radius and outer radius and divide the value by 2. Hence,
r = (a + b)/2, where a is the inner radius and b is the outer radius which can be found by adding the length of a square section to the inner radius.
b = 25.1 + 3 = 28.1 cm
a = 25.1 cm
r = (25.1 + 28.1)/2 = 26.6 cm = 0.266m
B = 4π x 10⁻⁷ x 600 x 3/2π x 0.266
B = 1.353 x 10⁻³ T
The strength of the magnetic field at the center of the square cross section is 1.3 x 10⁻³ T