Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Answer:
F1 = K Q1 Q2 / R1^2
F2 = K Q1 / 2 * Q2 / (2 R1)^2
F2 / F1 = 1/2 / 4 = 1/8
The new force is 5N (1/2 due to charge and 1/4 due to distance)
The answer you are looking for is:
D.) It facilitates the moment of the current though a wire.
Hope that helps!!
Have a wonderful day!!<span />
It’s physical something you can physically do
Answer:
T= 4.24sec
Explanation:
We are going to use the formula below to calculate.

Where T is period
L is length of rod
g is acceleration due to gravity =
From the problem, the rod is pivoted at 1/4L which means that three quarter of the rod was used for the oscillation. lets call this

= 4.4625m
thus
T= 4.24sec