Answer:
Mars
Explanation:
Terrestrial or inner planets like Mars and Venus were formed near the Sun where the solar system's temperatures were very high.
Answer:
Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Initial rate of the reaction = R = 
![R = k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%20%3D%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
![4.0\times 10^5 M/s=k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=4.0%5Ctimes%2010%5E5%20M%2Fs%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
The initial rate of the reaction when concentration of hydrogen gas is doubled : R'
![[H_2]'=2[H_2]](https://tex.z-dn.net/?f=%5BH_2%5D%27%3D2%5BH_2%5D)
![R'=k\times [N_2][H_2]'^3=k\times [N_2][2H_2]^3](https://tex.z-dn.net/?f=R%27%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%27%5E3%3Dk%5Ctimes%20%5BN_2%5D%5B2H_2%5D%5E3)
![R'=8\times k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%27%3D8%5Ctimes%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)

Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
I believe you just look at your periodic table for this value. I don't think there is any math involved.
Therefore one mole of Mg = 24.305g.
The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³
Gain or lose.
The exchange of electrons in chemical bonding seeks to fulfill the octet rule. There are some exceptions, such as with hydrogen and helium, whose valence shells have a capacity of two electrons.