Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J
Both aluminum and chlorine have known charges, which are +3 and -1 respectively. To make them cancel each other out in charge, you would need 3 chlorine and for one aluminum, therefore

would be correct
The rate of a reaction would be one-fourth.
<h3>Further explanation</h3>
Given
Rate law-r₁ = k [NO]²[H2]
Required
The rate of a reaction
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
Can be formulated:
Reaction: aA ---> bB

or

The concentration of NO were halved, so the rate :
![\tt r_2=k[\dfrac{1}{2}No]^2[H_2]\\\\r_2=\dfrac{1}{4}k.[No]^2[H_2]\\\\r_2=\dfrac{1}{4}r_1](https://tex.z-dn.net/?f=%5Ctt%20r_2%3Dk%5B%5Cdfrac%7B1%7D%7B2%7DNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dk.%5BNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dr_1)
°°The next Lunar Eclipse is on March 23, a Wednesday THIS YEAR - 65 days left!
°° A Lunar Eclipse happens when the moon passes directly behind the earth into its umbra, or, shadow. This can occur only when the sun, Earth and moon are aligned exactly, or very closely so, with the Earth in the middle. Hence, a Lunar Eclipse can occur only the night of a full moon. The type and length of an eclipse depends upon the Moon's location relative to its orbital nodes. Isn't that cool?
↑ ↑ ↑ Hope this helps! :D
False. Chemical products are on the right side.