Answer:
- final temperature (T2) = 748.66 K
- ΔU = w = 5620.26 J
- ΔH = 9367.047 J
- q = 0
Explanation:
ideal gas:
reversible adiabatic compression:
∴ q = 0
∴ w = - PδV
⇒ δU = δw
⇒ CvδT = - PδV
ideal gas:
⇒ PδV + VδP = RδT
⇒ PδV = RδT - VδP = - CvδT
⇒ RδT - RTn/PδP = - CvδT
⇒ (R + Cv,m)∫δT/T = R∫δP/P
⇒ [(R + Cv,m)/R] Ln (T2/T1) = Ln (P2/P1) = Ln (1 E6/1 E5) = 2.303
∴ (R + Cv,m)/R = (R + (3/2)R)/R = 5/2R/R = 2.5
⇒ Ln(T2/T1) = 2.303 / 2.5 = 0.9212
⇒ T2/T1 = 2.512
∴ T1 = 298 K
⇒ T2 = (298 K)×(2.512)
⇒ T2 = 748.66 K
⇒ ΔU = Cv,mΔT
⇒ ΔU = (3/2)R(748.66 - 298)
∴ R = 8.314 J/K.mol
⇒ ΔU = 5620.26 J
⇒ w = 5620.26 J
⇒ ΔH = ΔU + nRΔT
⇒ ΔH = 5620.26 J + (1 mol)(8.314 J/K.mol)(450.66 K)
⇒ ΔH = 5620.26 J + 3746.787 J
⇒ ΔH = 9367.047 J
Answer:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
Explanation:
Nitroglycerin has a chemical formula C3H5N3O9. The balanced chemical equation is as follows:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
We suppose that in a reaction, 44g of carbon dioxide is produced. The mass of nitroglycerin that must have reacted will be calculated as under:
Molecular mass of Nitroglycerin = 227g/mol
Molecular mass of Carbon dioxide = 44g/mol
No. of moles of carbon dioxide produced = 44/44 = 1 mole produced.
Now, from balanced chemical equation, we can see that
12 moles of carbon dioxide are produced by = 4 moles of nitroglycerin.
1 mole of carbon dioxide is produced by = 4/12 = 1/3 moles of nitroglycerin.
Mass of nitroglycerin which produced 1 mole of carbon dioxide = 1/3 x 227 = 75.666 grams.
All the objects are formed from the gas and dust orbitting the sun
The half-life of carbon-14 is about 5730 years