1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
12

An electron moving at right angles to a 0.1 T magnetic field experiences an acceleration of 6 × 1015 m.s-2. What is the speed of

the electron? How much does its speed change in 1 ns (10-9 s)?
Physics
1 answer:
GaryK [48]3 years ago
7 0

Explanation:

It is given that,

Magnetic field, B = 0.1 T

Acceleration, a=6\times 10^{15}\ m/s^2

Charge on electron, q=1.6\times 10^{-19}\ C    

Mass of electron, m=9.1\times 10^{-31}\ kg    

(a) The force acting on the electron when it is accelerated is, F = ma

The force acting on the electron when it is in magnetic field, F=qvB\ sin\theta

Here, \theta=90

So, ma=qvB

Where

v is the velocity of the electron

B is the magnetic field

v=\dfrac{ma}{qB}

v=\dfrac{9.1\times 10^{-31}\ kg\times 6\times 10^{15}\ m/s^2}{1.6\times 10^{-19}\ C\times 0.1\ T}

v = 341250  m/s

or

v=3.41\times 10^5\ m/s

So, the speed of the electron is 3.41\times 10^5\ m/s

(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.

You might be interested in
WHICH ROLLER COASTER CART HAS THE LEAST POTENTIAL ENERGY DUE TO GRAVITY?
DIA [1.3K]

Answer:

C. Car A

Explanation:

if the answer is: which roller coaster car has the greatest potential energy due to gravity brainly

6 0
3 years ago
A power supply is connected to a 59 Ohm resistor and a 53 Ohm resistor in series. The total current is found to be 0.15 A. What
kirill [66]

the answer is 47265.dug

Explanation:

im bot sure

4 0
2 years ago
A race car starting from rest accelerates uniformly at a rare of 4.90 meters per second^2. What is the cars speed after it has t
Vesnalui [34]

From the law of Galileo Galilei  :v²=v₀²+2ad we take the speed

v²=0+2*4.90*200=1960=>v=√1960=44.27 m/s




4 0
3 years ago
The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hou
puteri [66]

Answer:

t=5.3687\ s  is the time taken by the car to accelerate the desired range of the speed from zero at full power.

Explanation:

Given:

Range of speed during which constant power is supplied to the wheels by the car is 0\ mph\ to\ 70\ mph.

  • Initial velocity of the car, v_i=0\ mph
  • final velocity of the car during the test, v_f=32\ mph=14.3052\ m.s^{-1}
  • Time taken to accelerate form zero to 32 mph at full power, t=1.2\ s
  • initial velocity of the car, u_i=0\ mph
  • final desired velocity of the car, u_f=64\ mph=28.6105\ m.s^{-1}

Now the acceleration of the car:

a=\frac{v_f-v_i}{t}

a=\frac{14.3052-0}{1.2}

a=11.921\ m.s^{-1}

Now using the equation of motion:

u_f=u_i+a.t

64=0+11.921\times t

t=5.3687\ s is the time taken by the car to accelerate the desired range of the speed from zero at full power.

8 0
3 years ago
A launched hopper reach to 1.20 m maximum height. How much is it’s launch velocity?
garri49 [273]

The launch velocity is 4.8 m/s

Explanation:

We can solve this problem by applying the law of conservation of energy. In fact, the mechanical energy of the hopper (equal to the sum of the potential energy + the kinetic energy) is conserved. So we can write:

U_i +K_i = U_f + K_f

where:

U_i is the initial potential energy, at the bottom

K_i is the initial kinetic energy, at the bottom

U_f is the final potential energy, at the top

K_f is the final kinetic energy, at the top

We can rewrite the equation as:

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m is the mass of the hopper

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0 is the initial height

u is the launch speed of the hopper

h_f = 1.20 m is the maximum altitude reached by the hopper

v = 0 is the final speed (which is zero when the hopper reaches the maximum height)

Solving the equation for u, we find the launch speed of the hopper:

u=\sqrt{2gh_g}=\sqrt{2(9.8)(1.20)}=4.8 m/s

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • The pacific plate is located under the pacific ocean. Its movement has created the island arc and the ring of fire. This plate d
    13·2 answers
  • A coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged con
    5·1 answer
  • Una rapidez de 7 mm/us es igual a:<br><br> A) 7000m/s<br> B) 70 m/s<br> C) 7 m/s<br> D) 0.07 m/s
    13·1 answer
  • Which of the following statements are true about measurements and units?
    13·1 answer
  • Using the knowledge you gained from your lessons and from this practical exercise, this engine appears to be a
    5·1 answer
  • A 5.00-g bullet leaves the muzzle of a rifle with a speed of 320 m/s. the expanding gases behind it exert what force on the bull
    13·1 answer
  • You split wood with an ax. How would you change the ax to make splitting the wood easier? You would increase mechanical advantag
    7·2 answers
  • How old is a bone if it still has 50% of its carbon-14 content?
    9·1 answer
  • Please help this due 11:59
    14·2 answers
  • Which planet has the least gravitational pull?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!