Answer:
The vertical trajectory is governed by Ordinary Differential Equation.
Time derivatives of each state variables.
d(d)/dt = v, d(m)/dt = -d(m-fuel)/dt, d(v)/dt = F/m.
Where V is velocity positive upwards, t is time, m is mass, m-fuel is fuel mass, F is Total force, positive upwards.
Therefore,
F = -mg - D + T, If V is positive and
F = -mg + D - T, If T is negative.
D is drag and the questions gave it as zero.
Explanation:
The two sign cases in derivative equations above are required because F is defined positive up, so the drag D and thrust T can subtract or add to F depending in the sign of V . In contrast, the gravity force contribution mg is always negative. In general, F will be some function of time, and may also depend on the characteristics of the particular rocket. For example, the T component of F will become zero after all the fuel is expended, after which point the rocket will be ballistic, with only the gravity force and the aerodynamic drag force being p
D is the answer. It is a firm statement.
Answer:
Blue light has the shortest wavelength amongst all the colours that combine to make white light. This means the blue light diffracts (bends) the most out of all of them. There will be no dispersion of colours because ideally, the blue light must consist of only one frequency.
The tangent looks good.
The curve is a bit crooked, at the 0.9 and 1.
But overall, cool graph.
"60 kg" is not a weight. It's a mass, and it's always the same
no matter where the object goes.
The weight of the object is
(mass) x (gravity in the place where the object is) .
On the surface of the Earth,
Weight = (60 kg) x (9.8 m/s²)
= 588 Newtons.
Now, the force of gravity varies as the inverse of the square of the distance from the center of the Earth.
On the surface, the distance from the center of the Earth is 1R.
So if you move out to 5R from the center, the gravity out there is
(1R/5R)² = (1/5)² = 1/25 = 0.04 of its value on the surface.
The object's weight would also be 0.04 of its weight on the surface.
(0.04) x (588 Newtons) = 23.52 Newtons.
Again, the object's mass is still 60 kg out there.
___________________________________________
If you have a textbook, or handout material, or a lesson DVD,
or a teacher, or an on-line unit, that says the object "weighs"
60 kilograms, then you should be raising a holy stink.
You are being planted with sloppy, inaccurate, misleading
information, and it's going to be YOUR problem to UN-learn it later.
They owe you better material.