The energy required to heat a substance is related by the formula:
Q = mCpΔT ; where Q is the energy, m is the mass of the substance, Cp is the specific heat capacity and ΔT is the change in temperature.
2000 = (4)(Cp)(5)
Cp = 100 Joules / g °C
ANSWER
T₂ = 10.19N
EXPLANATION
Given:
• The mass of the ball, m = 1.8kg
First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,
In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

Solve for T₁,

Now, we use the second equation to find the tension in the horizontal string,

Solve for T₂,

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.
Answer;
The mass value for the above kinetic energy equation is 400.0000 kg. This is equal to:
■ 400,000.0000 g.
■ 14,109.6000 ounces.
■ 881.8480 pounds.
3.6 kg.
<h3>Explanation</h3>
How much heat does the hot steel tool release?
This value is the same as the amount of heat that the 15 liters of water has absorbed.
Temperature change of water:
.
Volume of water:
.
Mass of water:
.
Amount of heat that the 15 L water absorbed:
.
What's the mass of the hot steel tool?
The specific heat of carbon steel is
.
The amount of heat that the tool has lost is the same as the amount of heat the 15 L of water absorbed. In other words,
.
.
.