Answer:
average acceleration is 1.365 ×
m/s²
Explanation:
given data
initila speed u = -32.2 m/s
final speed v = 21.6 m/s
time taken t = 0.00394 s
solution
we get here average acceleration that will be express as
v = u + at ..........................1
put here value and we get
21.6 = -32.2 + a × 0.00394
solve it we get
a = 1.365 ×
m/s²
so average acceleration is 1.365 ×
m/s²
F(g)= Gm1m2/ r^2
If mass is increased, so will the force of gravity because it is in direct relationship with the gravitational force, but if distance is increased, the force of gravity will decrease because it is indirectly related ( since it is on the bottom of the equation)
Answer:
(a) 2.34 s
(b) 6.71 m
(c) 38.35 m
(d) 20 m/s
Explanation:
u = 20 m/s, theta = 35 degree
(a) The formula for the time of flight is given by


T = 2.34 second
(b) The formula for the maximum height is given by


H = 6.71 m
(c) The formula for the range is given by


R = 38.35 m
(d) It hits with the same speed at the initial speed.
Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N