The operating coefficient or performance coefficient of a heat pump is the ratio between the heating or cooling provided and the electricity consumed. The higher coefficients are equivalent to lower operating costs. The coefficient can be greater than 1, because it is a percentage of the output: losses, other than the thermal efficiency ratio: input energy. Mathematically can be written as,


Replacing,


Therefore the heat is 3.822kJ
Answer:
141.78 ft
Explanation:
When speed, u = 44mi/h, minimum stopping distance, s = 44 ft = 0.00833 mi.
Calculating the acceleration using one of Newton's equations of motion:

Note: The negative sign denotes deceleration.
When speed, v = 79mi/h, the acceleration is equal to when it is 44mi/h i.e. -116206.48 mi/h^2
Hence, we can find the minimum stopping distance using:

The minimum stopping distance is 141.78 ft.
The candle flame releases hot gases, which directly go in upwards directions. Due to which the air near the flame of the candle is very hot and dense. The particles along with vapour move up. And since the sideways, the air is not very dense and hot, we are able to hold the candle. In anti-gravity region, there will be no density differences and also, the convection process wont occur. So, the candle quickly snuffs off.
Answer:
Explanation:
The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object.
Answer:
According to Newton's Second Law of Motion :
Where,
F = Force Applied
m = Mass of the object
a = Acceleration
Now, we will use this law to solve this question.
Given :
Acceleration or a = 15.3 m/s²
Force = 44 N
Mass = ?
Substitute, the given values in the formula.
F = ma
⇒ m = F/a
m = 44/15.3
<u>m = 2.9 kg</u>