Molarity is defined as the number of moles of solute in 1 L of solution
number of NaOH moles present - 0.20 mol
volume of solution - 150 mL
since molarity is taken as number moles of solute in 1000 mL
if 150 mL contains - 0.20 mol
then 1000 mL should contain - 0.20 / 150 x 1000 = 1.33 mol
therefore molarity is 1.33 M
Answer:
Blue
Explanation:
If you look at a flame, blue is always at the bottom right? So that would be common sense that blue would be the hottest.
The volume becomes two. You have to use the equation P1 x V1 = P2 x V2
P is pressure and V is volume.
P1 = 50 P2 = 125
V1 = 5 V2 = v (we don't know what it is)
Then set up the equation:
50 times 5 = 125 times v
250 = 125v
the divide both sides by 125 and isolate v
2 = v
Therefore the volume is decreased to 2.
Also, Boyle's Law explains this too: Volume and pressure are inversely related, This means that when one goes up the other goes down (ie when pressure increases volume decreases and vice versa). Becuase the pressure went up from 50 KPa tp 125 KPa the volume had to decrease.
Answer:
potassium hydrogen phthalate KHP MOLAR MASS = 204.233 glmol
to get 1000 ml
Molar concentration = Mass concentration/Molar Mass
mass concentration = molar concentration x molar mass
mass concentration=0.1 M,
molar mass= 204.233 g/mol
so to get 1L
mass conc = 204.233 x 0.1
= 20.4233g for 1L or 1000 ml
to get 6.00 ml
if 20.4233g is for 1000ml
then to 6.00 ml
= 20.4233 x 6 / 1000
= 0.123g for 6.00 ml
according to the equation below
NaOH(aq) + KHC8H4O4(aq) --> KNaC8H4O4(aq) + H2O(l)
number of moles of NaOH is equal to that of KHP
so the same amount will be needed too, which is
= 0.123g
A. Thermal energy good job