120.38 g/mol is the answer
Answer:
The percent isotopic abundance of C- 12 is 98.93 %
The percent isotopic abundance of C- 13 is 1.07 %
Explanation:
we know there are two naturally occurring isotopes of carbon, C-12 (12u) and C-13 (13.003355)
First of all we will set the fraction for both isotopes
X for the isotopes having mass 13.003355
1-x for isotopes having mass 12
The average atomic mass of carbon is 12.0107
we will use the following equation,
13.003355x + 12 (1-x) = 12.0107
13.003355x + 12 - 12x = 12.0107
13.003355x- 12x = 12.0107 -12
1.003355x = 0.0107
x= 0.0107/1.003355
x= 0.0107
0.0107 × 100 = 1.07 %
1.07 % is abundance of C-13 because we solve the fraction x.
now we will calculate the abundance of C-12.
(1-x)
1-0.0107 =0.9893
0.9893 × 100= 98.93 %
98.93 % for C-12.
Answer:
0.017mole
0.0033M
Explanation:
Given parameters:
Formula of the compound:
Mg(ClO₃)₂
Mass of the sample = 3.24g
Unknown:
Number of moles of the sample = ?
Molarity = ?
Solution:
The number of moles of any substance is given as:
Number of moles =
Molar mass of Mg(ClO₃)₂ = 24 + 2[35.5 + 3(16)] = 191g/mol
Number of moles =
= 0.017mole
Molarity is the number of moles of a solute in a solution:
Molarity =
Volume given = 5.08L
Molarity =
= 0.0033M
Answer:
Azide synthesis is the first method on the table of synthesis of primary amines. The Lewis structure of the azide ion, N3−, is as shown below.
an azide ion
An “imide” is a compound in which an N−−H group is attached to two carbonyl groups; that is,
imide linkage
You should note the commonly used trivial names of the following compounds.
phthalic acid, phthalic anhydride, and phthalimide
The phthalimide alkylation mentioned in the reading is also known as the Gabriel synthesis.
If necessary, review the reduction of nitriles (Section 20.7) and the reduction of amides (Section 21.7).
Before you read the section on reductive amination you may wish to remind yourself of the structure of an imine (see Section 19.8).
The Hofmann rearrangement is usually called the Hofmann degradation. In a true rearrangement reaction, no atoms are lost or gained; however, in this particular reaction one atom of carbon and one atom of oxygen are lost from the amide starting material, thus the term “rearrangement” is not really appropriate. There is a rearrangement step in the overall degradation process, however: this is the step in which the alkyl group of the acyl nitrene migrates from carbon to nitrogen to produce an isocyanate.
Explanation: