Answer:
calar quantity, length of path. displacement: vector quanity, "as the crow flies" difference between start and finish regardless of path taken. Term.
Explanation:
Answer:
It traveled 4 centimeters.
Explanation:
In a speed versus time graph, the distance travelled is given by the area under the graph.
In this graph we have the following:
- The speed of the object is v = 1 cm/s between time t = 0 s and t = 4 s
- The speed of the object is v = 0 cm/s between time t = 4 s and t = 8 s
Since the speed in the second part is zero, the distance travelled in the second part is zero. So, the only distance travelled by the object is the distance travelled during the first part, which is equal to the area of the first rectangle:

Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s
C) total linear momentum of the ball and cannon is conserved.
Basically it happens that in the beginning before there is a momentum acting on the two bodies, these are a unique system. Here the total momentum of the System is 0. However, when the positive momentum of the cannonball is added, the system will be immediately affected by a negative momentum which will pull back the cannon. Could this be extrapolated as a condition of Newton's third law.