The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have
where C are the concentration values and t is the time taken for it to decompose.
Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Hello there!
Essentially, a control variable is what is kept the same throughout the experiment, and it is not of primary concern in the experimental outcome. Any change in a control variable in an experiment would invalidate the correlation of dependent variables (DV) to the independent variable (IV), thus skewing the results.
Answer:
The angle of banked curve that makes the reliance on friction unnecessary is
Explanation:
In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.
The only force in the direction of radius is the sine component of the weight of the car
The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.
Newton’s Second Law states that
Also, the car is making a circular motion:
Combining the equations:
Finally the angle is
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.