We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:
where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:
When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:
But the mechanical energy must be conserved, Ef=Ei, so we have
and so, the potential energy at the top of the flight is
Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals that scientists describe as elliptical. It is one of Kepler's laws. The sun is the focus of all the planets. The correct answer is D.
The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.
When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
To learn more about energy
brainly.com/question/582060
#SPJ4
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
The net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N. Details about net force can be found below.
<h3>How to calculate net force?</h3>
The net force of a body can be calculated by multiplying the mass of the body by its acceleration as follows:
Force = mass × acceleration
According to this question, a box with a mass of 8.0 kg is sitting on a frictionless surface and experiences an acceleration of 4.0 m/s2 to the right.
Net force = 8kg × 4m/s²
Net force = 32N
Therefore, the net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N.
Learn more about net force at: brainly.com/question/18031889
#SPJ1