13 cm
just solved the same question on mastering physics<span />
An object undergoing <span>uniform circular motion </span>is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction. So I'm thinking velocity
Answer: gases
Explanation: because gases move around freely and they would be the only one to make sense because solid are compacted together and liquid are not so fast at moving but gases are wild
dont use this this is a bad explanation
ANSWER
T₂ = 10.19N
EXPLANATION
Given:
• The mass of the ball, m = 1.8kg
First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,
In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

Solve for T₁,

Now, we use the second equation to find the tension in the horizontal string,

Solve for T₂,

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.
Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N