Given Information:
Diameter of spherical cell = 0.040 mm
thickness = L = 9 nm
Resistivity = ρ = 3.6×10⁷ Ω⋅m
Dielectric constant = k = 9.0
Required Information:
time constant = τ = ?
Answer:
time constant = 2.87×10⁻³ seconds
Explanation:
The time constant is given by
τ = RC
Where R is the resistance and C is the capacitance.
We know that resistivity of of any material is given by
ρ = RA/L
R = ρL/A
Where area of spherical cell is given by
A = 4πr²
A = 4π(d/2)²
A = 4π(0.040×10⁻³/2)²
A = 5.026×10⁻⁹ m²
The resistance becomes
R = (3.6×10⁷*9×10⁻⁹)/5.026×10⁻⁹
R = 6.45×10⁷ Ω
The capacitance of the cell membrane is given by
C = kεoA/L
Where k = 9 is the dielectric constant and εo = 8.854×10⁻¹² F/m
C = (9*8.854×10⁻¹²*5.026×10⁻⁹)/9×10⁻⁹
C = 44.5 pF
C = 44.5×10⁻¹² F
Therefore, the time constant is
τ = RC
τ = 6.45×10⁷*44.5×10⁻¹²
τ = 2.87×10⁻³ seconds
Answer:
Essentials. A battery is a device that stores chemical energy and converts it to electrical energy. The chemical reactions in a battery involve the flow of electrons from one material (electrode) to another, through an external circuit. The flow of electrons provides an electric current that can be used to do work.
The answer would be 5.6x10^5
The best scenario to describe the doppler effect would be listening to the siren of a passing ambulance or fire truck
then it is coming towards you, the pitch is higher, it gets higher as it approaches and peaks as it gets right in front of you. then it drop at once when it passes you and continues to drop till it fades away. this is a classic descrption of the doppler effect