The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Given:
The nitrogen gas molecule with a temperature of 330 Kelvins is released from Earth's surface to travel upward.
To find:
The maximum height of a nitrogen molecule when released from the Earth's surface before coming to rest.
Solution:
- The maximum height attained by nitrogen gas molecule = h
- The temperature of nitrogen gas particle = T = 330 K
The average kinetic energy of the gas particles is given by:

The nitrogen molecule at its maximum height will have zero kinetic energy as all the kinetic energy will get converted into potential energy
- The potential energy at height h =

- Molar mass of nitrogen gas = 28.0134 g/mol
- Mass of nitrogen gas molecule = m

- The acceleration due to gravity = g = 9.8 m/s^2
- The maximum height attained by nitrogen gas molecule = h
- The potential energy is given by:


The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Learn more about the average kinetic energy of gas particles here:
brainly.com/question/16615446?referrer=searchResults
brainly.com/question/6329137?referrer=searchResults
Answer:
The element with electron configuration 1s² 2s² 2p⁶ will most likely not........
Explanation:
<h3>The density of H₂ = 0.033 g/L</h3><h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m², v= m³)
T = temperature, Kelvin
n = N / No
n = mole
No = Avogadro number (6.02.10²³)
n = m / MW
m = mass
MW = molecular weight
For density , can be formulated :

P = 327 mmHg = 0,430263 atm
R = 0.082 L.atm / mol K
T = 48 ºC = 321.15 K
MW of H₂ = 2.015 g/mol
The density :

There are 69 moles in 376.2 g s