The reactions that will take place will generate Zinc salts that will
taint the food. Excessive levels of these salts can cause sickness, so
it is very important to ensure food hygiene standards are met by keeping
acidic foods away from damaging materials like zinc that will erode and
get into the food.
Molar mass of oxygen is:
M(O)=16 g/mol
Molar mass of carbon is:
M(C)=12 g/mol
Molar mass of carbon dioxide is:
M(CO2)=M(C)+2*M(O)
M(CO2)=12 g/mol+2*16g/mol
M(CO2)=44 g/mol
<span>Molar mass(M) is the mass of 1 mole of the substance (grams per mole of a compound).</span>
Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:
