Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3
Answer:
V = I * R
R = 2 / 3.5 = .571 ohms maximum resistance of wire
R = ρ L / A where R is proportional to L and inversely proportional to A
A = ρ L / R minimum area of wire
ρ = 1 / μ = 1.67E-8 ohm-m resistivity inverse of conductivity
A = 1.67E-8 ohm-m * 225 m / .571 ohm = 6.68E-6 m^2
A = 6.68 mm^2 since 1 mm^2 = 10-6 m^2 or 1 mm = 10-3 m
A = Π r^2 = 6.68 mm^2
r = (6.68 / 3.14)^1/2 mm = 2.13 mm radius of wire
d = 2 * r = 4.26 mm
Newton also understood that white light can be separated into its components because each ray of color is deviated by the glass of the prism by a different amount. He realized, for example, that red light is consistently less deviated than violet light.
When a cold air <span>mass replaces a warm air mass, this is called a cold front. Some characteristics of a called front before passing are winds coming from south or southwest area, warm temperature, falling pressure, and drizzles. When it passes, the winds are shifting, there is a sudden drop of temperature, minimum pressure followed by a sharp rise. After passing, the winds head to the west or northwest area, temperature is steadily dropping and the pressure is rising steadily.</span>
Wave speed = frequency (in Hz) x wavelength (in m) so wave speed = 11 x 0.011 = 0.121 m/s