1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
2 years ago
7

For what type of compound are we unable to write a molecular formula?

Chemistry
1 answer:
Anna007 [38]2 years ago
4 0

Answer:

Ionic compounds

Explanation:

Molecular formula consists of chemical symbols for constituent elements followed by the numeric subscripts describing number of the atoms of each element present in one molecule of the compound.

On the other hand, ionic compounds do not exist in the form of molecules. They are in the form of crystal lattice in the solid state which contains many ions each of cation and anion.

<u>Thus, a ionic compounds are unable to write a molecular formula. Empirical formulas to used to represent them.</u>

You might be interested in
To melt the ice on your driveway, you can use two moles of rock salt (NaCl) or two moles of calcium chloride (CaCl2). Which solu
Mila [183]
I know it would be calcium chloride, not sure why. Maybe someone could answer that part.
3 0
3 years ago
Read 2 more answers
What is one way water moves through the nonliving parts of an ecosystem during the water system?
tatyana61 [14]

Answer:

Water moves through the help of living organisms in an ecosystem. ... Plants absorbs water through their root system and loss by transpiration. Water also moves through the living organisms in an ecosystem. Other nonliving processes such as evaporation, precipitation, water returns back into the atmosphere.

Explanation:

hope this helps you

5 0
2 years ago
Read 2 more answers
A3. Answer each of the following: A student dissolved 1.3g of Ba(OH)2 (molar mass = 171.34 g/mol) in 250 mL of water and reacted
Sunny_sXe [5.5K]

Answer:

(i) Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

(ii) 121.392 mL of HNO3 0.125M are required to react completely with the Ba(OH)2 solution.

(iii) The molarity of the Ba(OH)2 solution is 0.0303 M

(iv) Bromothymol Blue (pH range 6.0 - 7.6)

(v) pH of the soultion would be 2.446

Explanation:

(i) First of all, to solve this problem we should write the balanced chemical equation to know the stoichiometry of the reaction:

Ba(OH)2 + HNO3 → Ba(NO3)2 + H2O

The previous reaction simply describes the reactants and products involved in the chemical process. As you can see, the mass balance is not balanced because the quantity of atoms in the reactants side of the equation is not equal to the ones in the products side. So we try to add coefficients to the reaction in order to balance the amount of atoms on both sides of the reaction. To to this, we take a look at the reaction: We see that the main product formed Ba(NO3)2 has 2 atoms of N, so we add a number 2 besides the HNO3 to equal the quantity of Nitrogen atoms:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + H2O

Now, we can see that from the reactants side of the equation there are 8 atoms of Oxygen and in the products side we only have 7. Hence, we add the number 2 besides the molecule of water:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

If we check the situation now, we can observe that all the atoms are balanced on both sides of the reaction, so We did it!

(ii) From the balanced equation we now know that 1 mole of Ba(OH)2 reacts with 2 moles of HNO3 to form the stated products. Let's see, therefore, how many moles of Ba(OH)2 are in solution:

According to the molar mass of Ba(OH)2: 1 mole = 171.34 g

So, the student add 1.3 g of the compound to water. This means that he added 7.587x10-3 moles of Ba(OH)2. This amount of Ba(OH)2 will react with 0.01517 moles of HNO3 taking into account the stoichiometry of the balanced equation described above (1 mol of Ba(OH)2 reacts with 2 moles of HNO3).

Now that we know the amount of moles of acid required to react with the hydroxide, we need to translate this moles into volume of acid solution:

We have a 0.125 M HNO3 solution. This means that there are 0.125 moles of HNO3 in 1000 ml of solution.

0.125 moles HNO3 ------ 1000 ml Solution

0.01517 moles --------- x = 121.392 ml HNO3 Solution

This means that we need 121.392 ml of a 0.125 M HNO3 solution to react completely with the Ba(OH)2 added by the student.

(iii) Now we are asked to calculate the molarity of the Ba(OH)2 solution. From the calculations performed before in point (ii) we know that the hydroxide solution consisted of 7.587x10-3 moles of Ba(OH)2 and that this quantity of moles were in 250 mL of water. So:

250 ml Solution ----- 7.587 x10-3 moles Ba(OH)2

1000 ml Solution ----- x = 0.0303 M

(iv) Since Ba(OH)2 and HNO3 are both strong base and acid respectively, they react with each other completely to form the salt Ba(NO3)2 and water. Therefore, the pH of the solution when the reactions ends will be neutral or nearly neutral (pH = 7) and because of this we need an indicator that would change its color around this pH to be able to visualize the end point of the titration. The Bromothymol blue serves this perfectly since its change in color ranges between pH 6.0 and 7.6.

(v) If we now calculate how many moles of HNO3 are present in 150 mL of a 0.125 M solution we obtain:

1000 mL solution ---- 0.125 moles HNO3

150 mL solution ------ x = 0.01875 moles.

From this, we know that if we add 150 mL of the acid solution we would have 0.01875 moles of HNO3. However, from the previous points, we know that 0.01517 moles of the compound will be consumed by the reaction with Ba(OH)2 leaving in solution only 3.58 x10-3 moles of HNO3 (0.01875 moles - 0.01517 moles).

This amount of HNO3 will dissociate according to the following equation:

HNO3 → H+ + NO3-

The amount of protons present in solution will determine the pH. Because, as we said before, Nitric acid is a strong acid, it will dissociate completely intro protons and nitrate. As a result of this, we would have 3.58 x10-3 moles of H+ in the solution (1 mole of HNO3 produces 1 mole of H+) and considering the contribution of protons in the solution given by the dissociation of the water negligible, then:

pH = - log [H+]

pH = - log [3.58 x10-3] = 2.446

3 0
3 years ago
The + symbol, on the products side, in a chemical equation means
malfutka [58]

Explanation:

Used to separate one reactant or product from another

If it's helpful ❤❤

THANK YOU

7 0
3 years ago
Which process releases heat?
borishaifa [10]

Answer:

C

Explanation:

burning gasoline i think pls can i have brainliest if right!

8 0
2 years ago
Read 2 more answers
Other questions:
  • Which substance is a diatoic molecule?<br> A] He<br> B] O2<br> C] CO2<br> D] H2O
    14·1 answer
  • For each set of reactions, determine the value of δh2 in terms of δh1. a+b→2c,δh1 1/2a+1/2b→c,δh2=? express your answer in terms
    12·1 answer
  • What is "free" nitrogen?
    13·2 answers
  • DIPOLES FORM AT EACH BOND BETWEEN HYDROGEN AND OXYGEN IN A WATER MOLECULE<br> BECAUSE _
    12·1 answer
  • The effective nuclear charge for an atom is less than the actual nuclear charge due to
    13·1 answer
  • What causes hail when it rains?
    13·1 answer
  • What features did you use to classify igneous rocks as extrusive or intrusive ?
    13·2 answers
  • Silver has a density of 10.5 g/cm³, and gold has a density of 19.3 g/cm³. Which would have a greater mass, 5 cm³ of silver or 5
    13·1 answer
  • Motion of falling object towards the earth is variable motion
    8·1 answer
  • Write a procedure for "how to crack an egg" in cooking. You must have at least 3 steps. The format of your procedure is more imp
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!