Answer:
atomic number 3
boiling point 1,342 °C (2,448 °F)
specific gravity 0.534 at 20 °C (68 °F)
oxidation state +1
electron configuration 2-1 or 1s22s1
Explanation:
i think this Is right 99% sure
Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
Mg donates two electrons to O
Explanation:
Lewis dot notation uses dots and crosses to represent valence electrons on atoms.
Magnesium is a metal and would donate or lose electrons during bonding.
Oxygen is a non metal and would gain electrons during bonding.
The correct option is;
Mg donates two electrons to O
Answer:
4- radioactive isotopes
Explanation:
I don't remember exactly but this question was on the regents
By definition of noble gases, neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
<h3>Noble gases</h3>
Noble gases are not very reactive, that is, they practically do not form chemical compounds. This means that they do not react with other substances, nor do they even react between atoms of the same gas, as is the case with diatomic gases such as oxygen (O₂).
The chemical stability of the noble gases and therefore the absence of spontaneous evolution towards any other chemical form, implies that they are already in a state of maximum stability.
All chemical transformations involve valence electrons, they are involved in the process of covalent bond formation and the formation of ions. Therefore, the practically null reactivity of the noble gases is due to the fact that they have a complete valence shell, which gives them a low tendency to capture or release electrons.
Since the noble gases do not react with the other elements, they are also called inert gases.
<h3>Neon</h3>
Neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
Learn more about noble gases:
brainly.com/question/8361108
brainly.com/question/11960526
brainly.com/question/19024000