The centripetal force : F = 293.3125 N
<h3>Further explanation</h3>
Given
mass = 65 kg
v = 9.5 m/s
r = 20 m
Required
the centripetal force
Solution
Centripetal force is a force acting on objects that move in a circle in the direction toward the center of the circle

F = centripetal force, N
m = mass, Kg
v = linear velocity, m / s
r = radius, m
Input the value :
F = 65 x 9.5² / 20
F = 293.3125 N
Answer:
Epx= - 21.4N/C
Epy= 19.84N/C
Explanation:
Electric field theory
The electric field at a point P due to a point charge is calculated as follows:
E= k*q/r²
E= Electric field in N/C
q = charge in Newtons (N)
k= electric constant in N*m²/C²
r= distance from load q to point P in meters (m)
Equivalences
1nC= 10⁻⁹C
known data
q₁=-2.9nC=-2.9 *10⁻⁹C
q₂=5nC=5 *10⁻⁹C
r₁=0.840m



Calculation of the electric field at point P due to q1
Ep₁x=0

Calculation of the electric field at point P due to q2


Calculation of the electric field at point P(0,0) due to q1 and q2
Epx= Ep₁x+ Ep₂x==0 - 21.4N/C =- 21.4N/C
Epy= Ep₁y+ Ep₂y=36.95 N/C-17.11N =19.84N/C
11m/s Bc of the fact that he sees her running at 11m/s
Answer:
n1 sin θ1 = n2 sin θ2 Snell's Law (θ1 is the angle of incidence)
sin θ2 = n1 / n2 * sin θ1
sin θ2 = 2.4 / 1.33 * sin θ1
sin θ2 = 1.80 * .407 = .734
θ2 = 47.2 deg
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129