You will need wire cutters to remove just a little bit of insulation it should only be a few centimeters(remove from both sides).Then make sure to wrap the wire neatly around the nail.The more wire you put the stronger your magnet is.
-Detor
Answer:
0.09375M
Explanation:
There are two methods of going about this, either we use dilution formula (easiest and fastest) or we solve through molarity.
Using dilution formula,
C2 (H2SO4) = ?
C1 (NaOH) = 0.25M
V2 (H2SO4) = 20cm³
V1 (NaOH) = 15cm³
However we can solve using molarity method
Equation of reaction =
2NaOH + H2SO4 ====》 Na2SO4 + 2H2O
O.25M of NaOH = 1000cm³
X moles = 15cm³
X = (0.25 * 15) / 1000
X = 0.00375 moles is present in 15cm³ of NaOH
From equation of reaction,
2 moles of NaOH requires 1 mole of H2SO4
Therefore
0.00375 / 2 = 0.001875 moles is present in H2SO4
From the reaction,
0.00187 moles of H2SO4 = 20 cm³
X moles = 1000cm³
X = (0.00187*1000) / 20 = 0.09375M
Answer: An element is a substance composed of a single type of atom. Hydrogen (element symbol H) and oxygen (element symbol O) are examples of elements. So, water is made from elements, but is not itself an element. Before people knew about atoms and molecules, water was considered to be an element
Explanation: Are water and air elements? Explain your answer
Answer:
3.2M HCl Solution
Explanation:
Molarity = moles of solute / volume of solution expressed in liters
moles of solute = 0.80 moles HCl
volume of solution = 250 ml = 0.250 Liter
Molarity (M) = 0.80 moles HCl / 0.250 Liters = 3.2M HCl Solution
Answer:
2. ΔG is zero, ΔH is positive, and ΔS is positive
Explanation:
When the ice is being converted to water ate 0ºC and 1 atm, there is an equilibrium between the solid and the liquid. At the equilibrium point, ΔG (the free energy) is zero. It is negative for spontaneous reactions and positive for nonspontaneous reactions.
For the phase change happens, the ice must absorb heat from the surroundings, so it's an endothermic reaction, and because of that ΔH (the enthalpy) must be positive. It is negative for exothermic reactions.
In the liquid state, the molecules have more energy and the randomness is higher than the solid-state. The entropy (S) is the measure of the randomness, so if it's increasing, ΔS must be positive.