Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M
Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32 60
CH₃OH + CO ⟶ CH₃COOH
m/g: 160
(a) Moles of CH₃OH

(b) Moles of CH₃COOH

(c) Mass of CH₃COOH
