Answer:
4.08 × 10⁻³
Explanation:
Step 1: Write the balanced reaction at equilibrium
NH₄I(s) ⇄ NH₃(g) + HI(g)
Step 2: Calculate the equilibrium constant
The equilibrium constant (K) is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. Only gases and aqueous species are included.
![K = [NH_3] \times [HI] = 4.34 \times 10^{-2} \times 9.39 \times 10^{-2} = 4.08 \times 10^{-3}](https://tex.z-dn.net/?f=K%20%3D%20%5BNH_3%5D%20%5Ctimes%20%5BHI%5D%20%3D%204.34%20%5Ctimes%2010%5E%7B-2%7D%20%20%5Ctimes%209.39%20%5Ctimes%2010%5E%7B-2%7D%20%3D%204.08%20%5Ctimes%2010%5E%7B-3%7D)
Answer is: 4.826 grams of anhydrous nickel(II) sulfate could be obtained.
m(NiSO₄×7H₂O) = 8.753 g; mass of heptahydrate.
m(NiSO₄×6H₂O) = 8.192 g; mass of hexahydrate.
m(H₂O) = m(NiSO₄×7H₂O) - m(NiSO₄×6H₂O).
m(H₂O) = 8.753 g - 8.192 g.
m(H₂O) = 0.561 g.
m(NiSO₄) = m(NiSO₄×7H₂O) - 7 · m(H₂O).
m(NiSO₄) = 8.753 g - 7 · 0.561 g.
m(NiSO₄) = 4.826 g.
Answer:
C₅H₈N₂O
Explanation:
The molecular formula denotes the various forms of atoms contained in a molecule at a particular fixed proportion.
The molecular ion M⁺ = 112.0499
and the exact mass values are given as follows:
C = 12.000
H = 1.0078
N = 14.003
O = 15.995
By assumption:
C = 12.000 × 5 = 60.0000
H = 1.0078 × 8 = 1.0078
N = 14.003 × 2 = 28.0060
<u>O = 15.995 × 1 = 15.9950 </u>
<u> = 112.0634 </u>
This is approximtely equal to 112.0499.
As such the Molecular formula for the compound = C₅H₈N₂O
Answer:
a star is like the sun a burning ball of gas that gives light to the outer space.
Explanation:
Answer:
The equilibrium pressure of NO2 is 0.084 atm
Explanation:
Step 1: Data given
A reaction mixture initially contains 0.86 atm NO and 0.86 atm SO3.
Kp = 0.0118
Step 2: The balanced equation
NO( g) + SO3( g) ⇌ NO2( g) + SO2( g)
Step 3: The initial pressures
p(NO) = 0.86 atm
p(SO3) = 0.86 atm
p(NO2) = 0 atm
p(SO2) = 0 atm
Step 4: The pressure at the equilibrium
For 1 mol NO we need 1 mol SO3 to produce 1 mol NO2 and 1 mol SO2
p(NO) = 0.86 -x atm
p(SO3) = 0.86 -xatm
p(NO2) = x atm
p(SO2) = x atm
Step 5: Define Kp
Kp = ((pNO2)*(pSO2)) / ((pNO)*(pSO3))
Kp = 0.0118 = x²/(0.86 - x)²
X = 0.08427
p(NO) = 0.86 -0.08427 = 0.77573 atm
p(SO3) = 0.86 -0.08427 = 0.77573 atm
p(NO2) = 0.08427 atm
p(SO2) = 0.08427 atm
The equilibrium pressure of NO2 is 0.08427 atm ≈ 0.084 atm