Answer: <span>A fewer number of particles of the sample will dissolve in 1 minute.
That is because normally the solubility and rate of solubility of the salts in water increase with the temperature. This is, the higher the temperature the higher and faster the number of particles that the water can dissolve. So, at 70°C more particles will be dissolved in water in 1 minute than at 20°C.
</span>
Answer:
44.2 L
Explanation:
Use Charles Law:

We have all the values except for V₂; this is what we're solving for. Input the values:
- make sure that your temperature is in Kelvin
From here, we need to get V₂ by itself. To do this, multiply by 273 on both sides:

Therefore, V₂ = 44.2 L
It's also helpful to know that temperature and volume are linearly related. So, when temperature drops, so will volume and vice versa.
Answer:
it can last for 30 minutes
Explanation:
because it is very good at giving off heat, extothermal heat can last for quite a while.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
First, we need to determine the required moles of CaCl₂. We have 500 mL (0.500 L) of a 0.360 M solution (0.360 moles of CaCl₂ per liter of solution).

Then, we will convert 0.180 moles to grams using the molar mass of CaCl₂ (110.98 g/mol).

To prepare the solution, we weigh 20.0 g of CaCl₂ and add it to a beaker with enough distilled water to dissolve it. We stir it, heat it if necessary, and when we have a solution, we transfer it to a 500 mL flask and complete it to the mark with distilled water.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
You can learn more about solutions here: brainly.com/question/2412491
D. They all have the same number of valence electrons.