What is the catalytic triad of chymotrypsin, a type of serine protease? the enzyme-cofactor-intermediate complex the amino acids
serine, histidine, and aspartate the amino acids cysteine, histidine, and aspartate the enzyme-cofactor-substrate complex the amino acids serine, histidine, and glutamate
The correct answer is: Serine, Histidine, Aspartate
Explanation:
The catalytic triad of an enzyme is composed of three aminoacid residues which are the most important for its catalytic activity. They are located in the catalytic site of the enzyme. In the case of chymotrypsin- a serine protease, the catalytic triad is composed by serine, histidine and aspartate (Ser-His-Asp). Serine proteases hydrolyse peptidic bonds in proteins and peptides. To do that, the histidine-which interacts with the aspartate by a hydrogen bond so its pKa increases- take a proton from the serine. Thus, deprotonated serine is able to attack the peptide bond and to perform hydrolysis.
<span>Planck’s constant relates the
joules of energy absorbed/released by matter to the wave frequency f. the
plancks constant was first recognized in 1900 by Max Planck. The equation that
relates the joules of energy absorbed/released by matter to the wave frequency
f is called the plancks-eintein relation, E = hf</span>