Answer:
The empirical formula is Ag2O.
The empirical formula is Ag2O.Explanation:
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.The ratio of atoms is the same as the ratio of moles. So our job is to calculate the molar ratio of Ag to 2O.
do the steps ...
To get this into an integer ratio, we divide both numbers by the smaller value.
From this point on, I like to summarize the calculations in a table.
ElementAgMass/gXMolesXllRatiomllIntegers
—————————————————−———mAgXXXm7.96Xm0.07377Xll2.00mmm2
mlOXXXXl0.59mm0.0369Xml1mmmml1
There are 2 mol of Ag for 1 mol of O.
Answer:Hence, the bond length in HCl is 125 pm.
Explanation:
Bond length : It is an average distance between the nuclei of two bonded atoms in a molecule.
Also given that bond length is the distance between the centers of two bonded atoms. on the potential energy curve, the bond length is the inter-nuclear distance between the two atoms when the potential energy of the system reaches its lowest value. Beyond this if atoms come closer to each other then their will be repulsion between them.
So, the bond length between the Hydrogen and Chlorine atom in HCl molecule is :

Hence, the bond length in HCl is 125 pm.
Answer:
C
Explanation:
It afffects changes in pressure and temperature not melting and boiling points
Answer:
X 154
Check solution in explanation
Explanation:
Average atomic mass = ( mass 1× abudance) + ( mass 2× abudance)+ ( mass 3× abudance) / 100
(149×13.8)+(152×44.9) +(154×41.3)/100
2056.2 + 6824.8 + 6360.2/100
=152.412