It is covalent bonding. The electrons are shared between the phosphorus and the chlorines.
covalent bonding is when electrons are shared between two elements.
molecular polarity is a little bit complicated, but I will try to explain ;)
PCl3 is an alternation on tetrahedral molecules.
It means that P has one lone pair of electrons. This pair of electrons are only attracted to the P nuclei and thus a greater freedom of motion.
This means that their orbital is bigger and this pushes the 3 Cl atoms closer together.
The angle between each Cl now is 107 and the angle between Cls and P is greater than 107.
Now, due to this shape, and also electronegativity (Cl is more electronegative than P meaning that it tends to hog the electrons they share closer to itself), PCl3 is polar. Electrons that are shared tend to flow closer towards the Cl than the P side.
Therefore, on the Cl side of the molecule it's, more negative. On the P side, it's more positive.
Answer:
Explanation:
We shall apply gas law formula
P₁ V₁ / T₁ = P₂V₂ / T₂
.914 x 350 / ( 273 + 22.7 ) = 1 x 220 / T₂
1.0818 = 220 / T₂
T₂ = 203.36 K
= - 69.64 ⁰ C
Answer: the essential parts of a flower
Explanation:
are engaged with seed creation. In the event that a blossom contains both useful stamens and pistils, it is known as an ideal bloom, regardless of whether it doesn't contain petals and sepals. On the off chance that either stamens or pistils are deficient with regards to, the blossom is called imperfect.
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
When sodium carbonate is dissolved in water, the equation is
.
When carbon dioxide is placed in water, aqueous carbon dioxide is formed: 
<h3>Dissolution of compounds in water</h3>
Some compounds are water-soluble, some are just partially soluble, while others are insoluble in water. Some soluble or partially soluble substances dissociate in water into their component ions. These substances are said to be ionic.
Sodium carbonate, like every other sodium salt, is soluble in water. It dissolves in water to form an aqueous solution of sodium carbonate.
While in solution, sodium carbonate dissociates into its component ions according to the following equation:

Carbon dioxide, on the other hand, does not dissociate in water. Instead, it dissolves in water where most of it remains as aqueous carbon dioxide in equilibrium with a small amount of hydronium ion and hydrogen carbonate ion.
Since the hydronium and hydrogen carbonate ions formed are so minute, the equation of the reaction can be written as: 
More on the dissolution of substances can be found here: brainly.com/question/28580758
#SPJ1