Answer:
A long lever with the fulcrum as close as possible to the load
Explanation:
If F be the effort , W be the weight , L₁ be the distance of load from fulcrum and L₂ be the distance of effort from the fulcrum ,
Taking moment of force about the fulcrum , we have
W x L₁ = F x L₂
F = W x ( L₁ / L₂ )
F will be minimum when L₁ will be minimum .
Hence fulcrum should be as close as possible to the load.
83.9 is the answer i’m pretty sure
Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water