A reducing agent is one which is oxidised in the reaction itself. When you take into account the oxidation numbers you will see that the Cl- ions are oxidised from an oxidation number of -1 to 0 in Cl2. Therefore Cl- ions are the reducing agent.
Answer:
0.08 mol L-1
Explanation:
Sulfuric acid Formula: H2SO4
Ammonia Formula: NH3
Ammonium sulfate Formula: (NH₄)₂SO₄
H2SO4 + 2NH3 = 2NH4+ + SO4 2-
H2SO4 + 2NH3 = (NH₄)₂SO₄
H2SO4 = (1/2)x (32.8 x 10^-3 L x 0.116 mol L-1)/25 x 10^-3 L
= 0.08 mol L-1
Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0
Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g
Chemical reactions can be identified when there is a change in color, energy is produced, change in odor, or if new substance forms.