Answer:
Hi, this is a super vague question, so its pretty confusing to answer. Could you please be a bit more specific?
If you are referring to chemistry, then how you tell "what is what" is by the molecular makeup of an element (Periodic table), and "how that..affects what", chemical reactions can occur between elements
Okay so because of the difference in density a simple method for telling the difference between the two is to put a sample in a container with oil, because water has a higher density than the oil it would sink to the bottom but alcohol on the other hand is lighter than oil and would float on top of the oil.
However with this question I think that what you would do is use the ice to find out what the substance is, it would float on top of the liquid if it were water because the water is denser than ice but the ice would sink if it was alcohol because the alcohol is less dense than ice.
I hope this helps you, good luck : )
Answer:
a
Explanation:
the others are rude, and rather support this, while a helps to support the ending of white privlige
Answer:
20619.4793 years
Explanation:
The half life of carbon-14 = 5730 years
The formula for the half life for a first order kinetic reaction is:
Where,
is the half life
k is the rate constant.
Thus rate constant is:
5730 years=ln(2)/k
k = 1.21×10⁻⁴ years ⁻¹
Using integrated rate law as:

Where,
is the concentration at time t
is the initial concentration
Given that the final concentration contains 8.25 % of the original quantity which means that:

So,
ln(.0825)= -1.21×10⁻⁴×t
<u>
t = 20619.4793 years</u>
<u></u>
Hello @Lucysrv18,
How are you doing? In this case, we know that Electromagnetic waves that are visible to the human eye is neither made up of two electromagnetic waves nor three. Therefore B and C is incorrect.
These electromagnetic waves are divided and they are our final two options. For sure, i can say that the wavelengths in a visible electromagnetic wave are not divided into nine, but instead it is divided into 7.
The answer to your question is A.
Thank you,
Darian D.