Answer:
A stripe of magnetic information that is affixed to the back of a plastic credit or debit card.
Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis
C it is the energy required to break existing chemical bonds, it is the amount of energy that a reaction requires in order for the reactants to successfully collide and react
Answer:
Yes,in fact visible 'light' is a form of radiation, which can be defined as an energy that travels in the form of electromagnetic waves. It can also be described as a flow of particle-like 'wave-packets', called photons, that travel constantly at the speed of light (about 300 000 kilometres per second).
Explanation:
Answer: A flower pot falling
Explanation: