Answer:
A) microwaves and ultraviolet
Explanation:
this is the spectrum in order:
radio waves
microwaves
infra red
visible light
ultraviolet
X rays
gamma rays
The time taken for the athlete to finish the race is 20 s (Option A)
<h3>What is power? </h3>
Power is simply defined as the rate at which work is done. It can be expressed mathematically as
Power (P) = work (W) / time (t)
But
Work = weight × distance
Therefore,
Power = (weight × distance ) / time
<h3>How to determine the time </h3>
- Mass (m) = 55 Kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Weight = mg = 55 × 9.8 = 539 N
- Power (P) = 5.4 KW = 5.4 × 1000 = 5400 W
- Distance (d) = 200 m
- Time (t) =?
Power = (weight × distance ) / time
5400 = (539 × 200) / t
5400 = 107800 / t
Cross multiply
5400 × t = 107800
Divide both side by 5400
t = 107800 / 5400
t = 20 s
Learn more about power:
brainly.com/question/5684937
#SPJ1
Answer:
Light comes in different colors like radio, ultra violet, gamma-ray, etc, and they are invisible to the bare eye
Explanation:
<h2>Answer</h2>
option D)
2.4 seconds
<h2>Explanation</h2>
Given in the question,
mass of car = 1200kg
speed of car = 19m/s
Force due to direction of travel
F = ma
= 12000(a)
Force to due frictional force in reverse direction
-F = mg(friction coefficient)
= -12000(9.81)(0.8)
<h2>
-mg(friction coefficient) = ma </h2>
(cancelling mass from both side of equation)
g(0.8) = a
(9.81)(0.8) = a
a = 7.848 m/s²
<h2>Use Newton Law of motion</h2><h3>vf - vo = a • t</h3>
where vf = final velocity
vo = initial velocity
a = acceleration
t = time
0 - 19 = 7.8(t)
t = 19/7.8
= 2.436 s
≈ 2.4s
Answer:
The size of the image is 1.04 m.
Explanation:
Given that,
Height of object = 2.40 m
Distance of object = 2.60 m
Radius of curvature =4.00 m
Focal length 
We need to calculate the image distance
Using mirror formula




We need to calculate the height of the image
Using formula of magnification

Put the value into the formula



Hence, The size of the image is 1.04 m