1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s344n2d4d5 [400]
3 years ago
10

_______ is a material property that pertains to local resistance to plastic deformation, such as scratching or denting. It is of

ten measured by poking a material with a very hard tip (like diamond) and measuring the size and depth of the resulting crater that forms.
Engineering
1 answer:
Readme [11.4K]3 years ago
7 0

Answer: hardness

Explanation:

Hardness is a measure of a material's ability to resist plastic deformation. In other words, it is a measure of how resistant material is to denting or scratching. Diamond, for example, is a very hard material. It is extremely difficult to dent or scratch a diamond. In contrast, it is very easy to scratch or dent most plastics.

You might be interested in
Question 64 (1 point)
Xelga [282]

Answer: c fine sand aggregate, portland cement,fine sand

Explanation:

7 0
3 years ago
A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
torisob [31]

Answer:

Explanation:

Given:

Tooth Number, N = 24  

Diametral pitch pd = 12

pitch diameter, d = N/pd = 24/12 = 2in

circular pitch, pc = π/pd  = 3.142/12 = 0.2618in

Addendum, a  = 1/pd = 1/12 =0.08333in

Dedendum, b = 1.25/pd = 0.10417in

Tooth thickness, t = 0.5pc = 0,5 * 0.2618  = 0.1309in

Clearance, c = 0.25/pd = 0.25/12 = 0.02083in

5 0
3 years ago
Read 2 more answers
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
Rashid [163]

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

6 0
1 year ago
Which of the following is the class of ingredient which is the base for most baked items?
Ierofanga [76]

Answer:flour

Explanation:

3 0
2 years ago
Other questions:
  • Use the convolutional integral to find the response of an LTI system with impulse response ℎ(????) and input x(????). Sketch the
    8·1 answer
  • . A storm sewer is carrying snow melt containing 1.200 g/L of sodium chloride into a small stream. The stream has a naturally oc
    8·1 answer
  • Ammonia enters an adiabatic compressor operating at steady state as saturated vapor at 300 kPa and exits at 1400 kPa, 140◦C. Kin
    11·1 answer
  • An electric field is expressed in rectangular coordinates by E = 6x2ax + 6y ay +4az V/m.Find:a) VMN if point M and N are specifi
    9·1 answer
  • How do I calculate the gear ratio​
    6·1 answer
  • 2- A 2-m3 insulated tank containing ammonia at -20 C, 80% quality, is connected by a valve to a line flowing ammonia at 2 MPa, 6
    14·1 answer
  • Find all the words, Figure out my puzzle!
    14·2 answers
  • What building codes did Mega Corporation fail to follow?
    9·1 answer
  • What are the risks of biohacking? Do you think the risks of biohacking outweigh the advantages? Why or why not?
    5·1 answer
  • Complex machines are defined by
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!