Answer:
The head loss in Psi is 0.390625 psi.
Explanation:
Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.
Given:
Factor cv is 48.
Flow rate of water is 30 GPM.
GPM means gallon per minute.
Calculation:
Step1
Expression for head loss for the water is given as follows:

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.
Step2
Substitute 48 for cv and 30 for Q in above equation as follows:


h = 0.390625 psi.
Thus, the head loss in Psi is 0.390625 psi.
Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%
Answer:
1. You have the courage to help without expecting a reward.
2. Because actions are more eloquent than words. Actions are far more valuable and counted than words, and that's how she inspired me.
3. Doing simple things that can make someone grateful and happy without knowing that someone is inspired and motivated by your good deeds, and also doing some interesting things By.
Explanation:
I think it’s is false I’m not that sure
Answer:
As we know that every molecule is attached by a strong force .The force required to disassemble the atoms is know as atomic binding force or we can say that the force required to disassemble the electron from atoms is known as binding force.On the other hand the energy require to doing this is known as atomic binding energy.
If the binding force is high then it will become difficult to disassemble thermally as well as mechanically.So we can say that it have direct relationship with materials strength and thermal stability.