Physical because you can see it evaporate have a great día
Answer:
This is most likely a multi-stepped reaction.
Explanation:
From the collision theory, we know that it is super improbable for 3 different molecules (2 NO and 1 O2) to all hit each other at the perfect speed in the perfect position to make the products. From this, we can pretty confidently say that this is most likely a multi-stepped reaction.
Hope this helps! :)
Answer:
d. A water particle and an air particle
Explanation:
The force of gravity (F) between two objects of masses m1 and m2 and separated by a distance r is given as:

where G is the gravitational constant
This force is therefore, directly proportional to the masses and inversely related to the distance between them.
Based on the given options, since the masses of the water and air particles are very small (masses of earth, moon and sun is relatively huge), the gravitational force between them would be negligible and difficult to measure.
<em>The number of protons and electrons in a neutral atom of the element are;</em>
D. 29 protons and 29 electrons
<u>The atomic number of an element is equal to the number of protons in the nucleus of each atom of that element.</u>
<u>Thus copper has an atomic number of 29, all atoms of copper will have 29 protons.</u>
Complete Question:
Suppose a cobalt atom in the +3 oxidation state formed a complex with two bromide (Br-) anions and four ammonia (NH3) molecules. write the chemical formula of this complex.
Answer:
[Co(NH₃)₄]⁺Br₂
Explanation:
The cobalt atom with +3 oxidation is represented as Co⁺³, and if it's bonded to two bromide ions, and four ammonia molecules. The molecules that are bonded to the metal atom (Co) are called complexing agents.
In the representation, we first put the molecules that surround the metal atom, forming an anion with the oxidation of the metal:
[Co(NH₃)₄]⁺³
Then, the ions are put in the formula. Because there are two bromides ion, each one with 1 minus charge, only 2 plus charged will be neutralized, and the complex will be:
[Co(NH₃)₄]⁺Br₂