Answer:
7.32g of HNO3 are required.
Explanation:
1st) From the balanced reaction we know that 2 moles of HNO3 react with 1 mole of Ca(OH)2 to produce 2 moles of H2O and 1 mole of Ca(NO3)2.
From this, we find that the relation between HNO3 and Ca(OH)2 is that 2 moles of HNO3 react with 1 mole of Ca(OH)2.
2nd) This is the order of the relations that we have to use in the equation to calculate the grams of nitric acid:
• starting with the 4.30 grams of Ca(OH)2.
,
• using the molar mass of Ca(OH)2 (74g/mol).
,
• relation of the 2 moles of HNO3 that react with 1 mole of Ca(OH)2 .
,
• using the molar mass of HNO3 (63.02g/mol).

So, 7.32g of HNO3 are required.
Answer:
given that
....the mass of the metal is 20g(0.02kg)
....specific heat capacity(c) is 0.4J/g°C
....ΔT=??
heat(Q)=3.9KJ(3900J)
Q=mcΔT
ΔT= Q/mc
.....=3900÷(20g x 0.4J/g°C)
.....=487.5°C
In a distillation model, it is better to let the cold water enter the bottom of the condenser and exit at the top because this can lead to a better cooling effect.
When water enters from the bottom, they will stay longer in the condenser, thus the vapor in the condenser can be cooled back into liquid faster.
In addition, this method can also save the amount of water used, since they water can stay longer in the condenser.
The amount of sodium bromide that would be formed from the reaction will be 7.5524 grams
<h3>Stoichiometric calculation</h3>
Looking at the equation of the reaction:

The mole ratio of CuBr2 and NaCl is 1:2.
Mole of 16.4 grams of CuBr2 = 16.4/223.37
= 0.0734 moles
Mole of 22.7 grams of NaCl = 22.7/58.44
= 0.3884 moles
Equivalent mole of NaCl = 0.1468 moles
Thus, NaCl is in excess while CuBr2 is limiting.
Mole ratio of CuBr2 and NaBr = 1:1
Mass of 0.0734 mole NaBr = 0.0734 x 102.894
= 7.5524 grams
More on stoichiometric calculation can be found here: brainly.com/question/8062886
Answer:
0.1 is the retention factor.
Explanation:
Distance covered by solvent ,
Distance covered by solute or ion,
Retention factor
is defined as ratio of distance traveled by solute to the distance traveled by solvent.


0.1 is the retention factor.