- The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter.
- The sun emits mainly near-infrared which is mainly composed of wavelength below 4 micrometers.
- The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers
Explanation:
The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter. This also translates to a frequency range of 430 TeraHertz to 300 Giga Hertz.
Because the sun is a star and is hot in comparison to earth and other planetary bodies, the bigger range of infrared radiation it emits is in the near-infrared which is mainly composed of wavelength below 4 micrometers.
The earth's surface produces infrared radiation of the mid-infrared range while cooler substances will produce far-infrared range
The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers and is produced by black bodies.
Learn More:
For more on infrared radiation check out;
brainly.com/question/2369243
#LearnWithBrainly
Answer: option a and d
Explanation:
Option A- Benzene undergoes substitution reaction
Example : benzene reacts with chlorine to form chlorobenzene, in the presence of Iron
(iii) chloride as a catalyst
C6H6 + Cl2 ---> C6H5Cl + HCl
Option D- Benzene also undergoes addition reaction
Example: benzene reacts with hydrogen , in the presence of nickel as a catalyst to form
cyclohexane
C6H6 + 3H2 ---> C6H12
Reasons why Option B isn't the answer
Although benzeme has degree of unsaturation but it's not five degree of unsaturation.
Benzene has 6 carbon atoms and 4 degrees of unsaturation (1 ring and 3 double
bonds).
If you work backwards and double the degrees of unsaturation you have 8 degrees of
unsaturation instead of 5.
Option C - Benzene isn't a saturated hydrocarbon
Answer:
d.have a mass of 1 amu..
Explanation:
Does not match a as the answer for a is electrons B.electron circle around the nucleus because neutrons are inside the nucleus.C.proton and neutrons make the nucleus so the only answer left is .d .which is correct
The reflection from plane mirror is shown in the diagram.
<h3><u>Explanation</u>:</h3>
The mirror is a plane surface which can reflect light. The diagram attached shows the schematic representation of reflection that occurs in a plane mirror.
The laws of reflection states that the incident ray, reflected ray and the normal at the point of incidence lies at the same plane. Here we can also see that all are lying on a same plane.
The second law states that angle of incidence is equal to angle of reflection. Here we can also see that the i =r. It is applicable here too.