Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Answer: The anwser is A a photon was realeased please mark brainliest
Explanation:
Answer: Rate law=
, order with respect to A is 1, order with respect to B is 2 and total order is 3. Rate law constant is 
Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
![Rate=k[A]^x[B]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
k= rate constant
x = order with respect to A
y = order with respect to A
n = x+y = Total order
a) From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :![\frac{4.8\times 10^{-2}}{1.2\times 10^{-2}}=\frac{k[0.10]^x[0.40]^y}{k[0.10]^x[0.20]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%7B1.2%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.20%5D%5Ey%7D)
therefore y=2.
b) From trial 2:
(3)
From trial 3:
(4)
Dividing 4 by 3:![\frac{9.6\times 10^{-2}}{4.8\times 10^{-2}}=\frac{k[0.20]^x[0.40]^y}{k[0.10]^x[0.40]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B9.6%5Ctimes%2010%5E%7B-2%7D%7D%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.20%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D)
, x=1
Thus rate law is ![Rate=k[A]^1[B]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E2)
Thus order with respect to A is 1 , order with respect to B is 2 and total order is 1+2=3.
c) For calculating k:
Using trial 1: ![1.2\times 10^{-2}=k[0.10]^1[0.20]^2](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-2%7D%3Dk%5B0.10%5D%5E1%5B0.20%5D%5E2)
.
Answer:
Reverse the
reaction
Explanation:
Reactions:

Overall:

As can be seen, in the overall reaction we have
in the reactants like in the second reaction and
in the products. The
is in the first reaction but as a reactant so we need to reverse that reaction:

Combining:


Transpiration is the progression of <em>water </em>inside a plant! So, the molecule representing transpiration is going to be good ol' H2O! =)