The major force between ethanol and rubbing alcohol is hydrogen bond. Hydrogen bond are intermolecular force that are weaker than covalent bond but holds atoms together in a molecules. For an hydrogen bond to be formed, a molecule must contain an hydrogen atom that will be bonded to one of the most electronegative element.
Answer:
Moles of Hydrogen produced is 5 moles
Explanation:
The balanced Chemical equation for reaction between zinc and sulfuric acid is :

This equation tells that ; when 1 mole of Zn react with 1 mole of sulfuric acid, it produces 1 mole of zinc sulfate and 1 mole of hydrogen.
Since sulfuric acid is in excess so Zinc is the limiting reagent
(Limiting reagent : Substance which get consumed when the reaction completes, limiting reagent helps in predicting the amount of products formed)
Limiting reagent (Zn) will decide the amount of Hydrogen produced


So,

Hence moles of Hydrogen produced is 5 moles
Answer:
2-ethoxy-2-methylpropan-1-ol
Explanation:
On this reaction, we have an "<u>epoxide"</u> (2-methyl-1,2-epoxypropane). Additionally, we have <u>acid medium</u> (due to the sulfuric acid
). The acid medium will produce the <u>hydronium ion</u> (
). This ion would be attacked by the oxygen of the epoxide. Then a <u>carbocation</u> would be produced, in this case, the most stable carbocation is the <u>tertiary one</u>. Then an <u>ethanol</u> molecule acts as a nucleophile and will attack the carbocation. Finally, a <u>deprotonation </u>step takes place to produce <u>2-ethoxy-2-methylpropan-1-ol</u>.
See figure 1
I hope it helps!
Answer:
m = 65.637 g
Explanation:
Heat = 0.612 kJ = 612 J ( Converting to J by multiplying by 1000)
Initial Temperature = 30.°C
Final Temperature = 51°C
Temperature change = Final Temperature - Initial Temperature = 51 - 30 = 21°C
Mass = ?
The relationship between these quantities is given by the equation;
H = mCΔT
where c = 0.444 J/g°C
Inserting the values in the equation;
612 = m * 0.444 * 21
m = 612 / (0.444 * 21)
m = 65.637 g