<span>HCl<span>(aq)</span>+NaOH<span>(aq)</span>→NaCl<span>(aq)</span>+<span>H2</span>O<span>(l)</span></span>
As you can see here, one mole of acid neutralizes one mole of base.
We use the concentration equation, which states that,
<span>c=<span>nv</span></span>
<span>
<span>
<span>
n is the number of moles
</span>
<span>
v is the volume of solution
</span>
</span>
</span>
Rearranging for moles, we get,
<span>n=c⋅v</span>
So, we have:
<span><span>n<span>NaOH</span></span>=0.1 M⋅0.05 L</span>
<span>=0.005 mol</span>
Since one mole of acid neutralizes one mole of base, then we must have: <span><span>n<span>HCl</span></span>=<span>n<span>NaOH</span></span></span>.
And so,
<span><span>c<span>HCl</span></span>=<span><span>n<span>HCl</span></span><span>v<span>HCl</span></span></span></span>
<span>=<span><span>0.005 mol</span><span>0.03 L</span></span></span>
<span>≈0.17 <span>M</span></span>
9.there are thermal cups that we use
Answer:
The answer to your question is 0.10 M
Explanation:
Data
Molarity = ?
mass of Sucrose = 125 g
volume = 3.5 l
Formula
Molarity = moles / volume
Process
1.- Calculate the molar mass of sucrose
C₁₂H₂₂O₁₁ = (12 x 12) + (1 x 22) + (16 x 11)
= 144 + 22 + 176
= 342 g
2.- Convert the mass of sucrose to moles
342 g of sucrose ------------------- 1 mol
125 g of sucrose -------------------- x
x = (125 x 1) / 342
x = 0.365 moles
3.- Calculate the molarity
Molarity = 0.365 / 3.5
4.- Result
Molarity = 0.10
Remember pH=-log(H ions). So it would be pH=-log(10^-7).