Hello!
Vx = V0x + Ax*t
Vx = 18.1 + 2.4t
Let’s take time as 7.50 seconds:
Vx = 18.1 + 2.4*7.50
Vx = 18.1 + 18 = 36.1 m/s
Then, the final velocity of the car is 36.1 m/s.
Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
Answer:
Momentum is given by
p
=
m
v
. Impulse is the change of momentum,
I
=
Δ
p
and is also equal to force times time:
I
=
F
t
. Rearranging,
F
=
I
t
=
Δ
p
t
=
0
−
20
,
000
5
=
−
4000
N
.
Explanation:
Momentum before the collision is
p
=
m
v
=
2000
⋅
10
=
20
,
000
k
g
m
s
−
1
.
Assuming the truck comes to a complete halt, the momentum after the collision is
0
k
g
m
s
−
1
.
The change in momentum,
Δ
p
, is initial minus final
→
0
−
20
,
000
=
−
20
,
000
This is called the impulse:
I
=
Δ
p
. Impulse is also equal (check the units) to force times time:
I
=
F
t
.
We can rearrange this expression to make
F
the subject:
F
=
I
t
=
Δ
p
t
=
−
20
,
000
5
=
−
4000
N
The negative sign just means the force acting is in the opposite direction to the initial momentum.
(This will be the average force acting during the collision: collisions are chaotic so the force is unlikely to be constant.)
The speed at which sound travels through the gas in the tube is 719.94m/s
<u>Explanation:</u>
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s
Answer:
r = 1.61 x 10^{11} m
Explanation:
energy radiated (H) = 2.7 x 10^31 W
surface temperature (T) = 11,000 k
assuming ε = 1 and taking σ = 5.67 x 10^{-8} W/m^{2}.K^{4}
we can find the radius of the star from the equation below
H = A x ε x σ x T^{4}
where area (A) = 4 x π x r^{2} (assuming it is a sphere)
therefore the equation becomes
H = 4 x π x r^{2} x ε x σ x T^{4}
2.7 x 10^31 = 4 x π x r^{2} x 1 x 5.67 x 10^{-8} x (11,000)^{4}
r = 
r = 1.61 x 10^{11} m