Answer:
Enzymes may require a nonprotein cofactor or ion for catalysis to take speed up more appreciably than if the enzymes act alone;
Enzymes increase the rate of chemical reaction by lowering activation energy barriers.
Explanation:
Some enzymes need a cofactor to act, it is attached to the enzyme and can be nonprotein such as a metal ion. The enzyme function depends on the physical properties of the environmental, especially temperature and pH, each enzyme has a great point of pH and temperature where it has a maximum activity.
If the three-dimensional function of an enzyme is altered, it loses it specified and may not catalyze the reaction, because the structure of the enzyme is responsable for its specified. The catalyst occurs because the enzyme lows the activation energy barriers and this increases the rate of the reaction.
Answer:
Rb+
hope it's right:)
..................................
Answer:- 3.12 g carbon tetrachloride are needed.
Solution:- The balanced equation is:
From given actual yield and percent yield we will calculate the theoretical yield that would be further used to calculate the grams of carbon tetrachloride.
percent yield formula is:
percent yield =
theoretical = 3.44 g
From balanced equation, there is 2:1 mol ratio between dichloethane and carbon tetrachloride.
Molar mass of dichloroethane is 84.93 gram per mol and molar mass of carbon tetrachloride is 153.82 gram per mol.
=
So, 3.12 grams of carbon tetrachloride are needed to be reacted.
Answer:
163.2g
Explanation:
First let us generate a balanced equation for the reaction. This is shown below:
4Al + 3O2 —> 2Al2O3
From the question given, were were told that 3.2moles of aluminium was exposed to 2.7moles of oxygen. Judging by this, oxygen is excess.
From the equation,
4moles of Al produced 2moles of Al2O3.
Therefore, 3.2moles of Al will produce = (3.2x2)/4 = 1.6mol of Al2O3.
Now, let us covert 1.6mol of Al2O3 to obtain the theoretical yield. This is illustrated below:
Mole of Al2O3 = 1.6mole
Molar Mass of Al2O3 = (27x2) + (16x3) = 54 + 48 =102g/mol
Mass of Al2O3 =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Al2O3 = 1.6 x 102 = 163.2g
Therefore the theoretical of Al2O3 is 163.2g