Answer:
a. -0.63 V
b. No
Explanation:
Step 1: Given data
- Standard reduction potential of the anode (E°red): -1.33 V
- Minimum standard cell potential (E°cell): 0.70 V
Step 2: Calculate the required standard reduction potential of the cathode
The galvanic cell must provide at least 0.70V of electrical power, that is:
E°cell > 0.70 V [1]
We can calculate the standard reduction potential of the cathode (E°cat) using the following expression.
E°cell = E°cat - E°an [2]
If we combine [1] and [2], we get,
E°cat - E°an > 0.70 V
E°cat > 0.70 V + E°an
E°cat > 0.70 V + (-1.33 V)
E°cat > -0.63 V
The minimum E°cat is -0.63 V and there is no maximum E°cat.
Chemical properties are all those properties that are shown when the chemical is a part of a reaction or is changed in any way. Unlike physical properties, they affect the composition of the chemical and the way it behaves, while physical does not change the chemical itself. Such properties are toxicity, flammability, reaction with other elements, stability, and many more.
Answer:
Convection currents form because a heated fluid expands, becoming less dense. The less-dense heated fluid rises away from the heat source. As it rises, it pulls cooler fluid down to replace it. This fluid in turn is heated, rises and pulls down more cool fluid.
Explanation:
here is your anserw please rate me the brainlest
Explanation:
This is correct!
Ions that exist in both the reactant and product side of the equation are referred to as spectator ions. Overall, they do not partake in the reaction. If they are present on both sides of the equation, you can cancel them out.
An example is;
Na+(aq) + Cl−(aq) + Ag+(aq) + NO3−(aq) → Na+(aq) + NO3−(aq) + AgCl(s)
The ions; Na+, NO3−(aq) would be cancelled out to give;
Cl−(aq) + Ag+(aq) → AgCl(s)
For example, at sea level the atmospheric pressure is 760 mm Hg<span> (also expressed as 760 torr, 101325 Pa, 101.3 kPa, 1013.25 mbar or 14.696 psi) and pure </span>water<span> boils at 100°C. However, in Calgary (approx. 1050m above sea level) the atmospheric pressure is approximately 670 </span>mm Hg<span>, and </span>water<span> boils at about 96.6°C.</span>