H2(g) +C2H4(g)→C2H6(g)
H-H +H2C =CH2→H3C-Ch3
2C -H bonds and one C-C bond are formed while enthalpy change (dH) of the reaction,
H-H: 432kJ/mol
C=C: 614kJ/mol
C-C: 413 kJ/mol
C-C: 347 kJ/mol
dH is equal to sum of the energies released during the formation of new bonds or negative sign, and sum of energies required to break old bonds or positive sign.
The bond which breaks energy is positive.
432+614 =1046kJ/mol
Formation of bond energy is negative
2(413) + 347 = 1173 kJ/mol
dH reaction is -1173 + 1046 =-127kJ/mol
The correct answer is B) Basic. Hope this helps.
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.
where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.
Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.
Answer:
just use the tongs and put it on a plate
Explanation:
Answer:
Explanation:
H3PO4(aq) + 3NaOH(aq) → Na3PO4(aq) + 3H2O(l)
mole of NaOH = 23.6 * 10 ⁻³L * 0.2M
= 0.00472mole
let x be the no of mole of H3PO4 required of 0.00472mole of NaOH
3 mole of NaOH required ------- 1 mole of H3PO4
0.00472mole of NaOH ----------x
cross multiply
3x = 0.0472
x = 0.00157mole
[H3PO4] = mole of H3PO4 / Vol. of H3PO4
= 0.00157mole / (10*10⁻³l)
= 0.157M
<h3>The concentration of unknown phosphoric acid is 0.157M</h3>