Answer:
Obtuse triangle
Step-by-step explanation:
If there is at least one angle that is more than 90°, it would make it an obtuse triangle.
~
1.342222327E37
The e is an exponent
<u>Answer:</u>
The coefficient of ![x^{5} \times y^{5} \text { is }=\left(252 \times 2^{5} \times(-3)^{5}\right)=252 \times 32 \times 243=1959552](https://tex.z-dn.net/?f=x%5E%7B5%7D%20%5Ctimes%20y%5E%7B5%7D%20%5Ctext%20%7B%20is%20%7D%3D%5Cleft%28252%20%5Ctimes%202%5E%7B5%7D%20%5Ctimes%28-3%29%5E%7B5%7D%5Cright%29%3D252%20%5Ctimes%2032%20%5Ctimes%20243%3D1959552)
<u>Solution:
</u>
The given expression is ![(2 x-3 y)^{10}](https://tex.z-dn.net/?f=%282%20x-3%20y%29%5E%7B10%7D)
As per binomial theorem, we know,
![(x+y)^{n}=\sum n C_{k} x^{n-k} y^{k}](https://tex.z-dn.net/?f=%28x%2By%29%5E%7Bn%7D%3D%5Csum%20n%20C_%7Bk%7D%20x%5E%7Bn-k%7D%20y%5E%7Bk%7D)
Now here a = 2x, b = (- 3y) and n = 10 and k = 0,1,2,….10
Now
will be the 6 term where k =5
Now, ![\mathrm{T}_{6}=10 \mathrm{C}_{5} \times(2 \mathrm{x})^{(10-5)} \times(-3 \mathrm{y})^{5}=10 \mathrm{C}_{5} 2^{5} \times \mathrm{x}^{5} \times(-3)^{5} \times \mathrm{y}^{5}](https://tex.z-dn.net/?f=%5Cmathrm%7BT%7D_%7B6%7D%3D10%20%5Cmathrm%7BC%7D_%7B5%7D%20%5Ctimes%282%20%5Cmathrm%7Bx%7D%29%5E%7B%2810-5%29%7D%20%5Ctimes%28-3%20%5Cmathrm%7By%7D%29%5E%7B5%7D%3D10%20%5Cmathrm%7BC%7D_%7B5%7D%202%5E%7B5%7D%20%5Ctimes%20%5Cmathrm%7Bx%7D%5E%7B5%7D%20%5Ctimes%28-3%29%5E%7B5%7D%20%5Ctimes%20%5Cmathrm%7By%7D%5E%7B5%7D)
So, the coefficient of
.
![10 \mathrm{C}_{5}=\frac{10 !}{5 ! \times(10-5) !}=\frac{10 !}{5 !+5 !}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 5 !}=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}=\left(\frac{30240}{120}\right)=252](https://tex.z-dn.net/?f=10%20%5Cmathrm%7BC%7D_%7B5%7D%3D%5Cfrac%7B10%20%21%7D%7B5%20%21%20%5Ctimes%2810-5%29%20%21%7D%3D%5Cfrac%7B10%20%21%7D%7B5%20%21%2B5%20%21%7D%3D%5Cfrac%7B10%20%5Ctimes%209%20%5Ctimes%208%20%5Ctimes%207%20%5Ctimes%206%20%5Ctimes%205%20%21%7D%7B5%20%21%20%5Ctimes%205%20%21%7D%3D%5Cfrac%7B10%20%5Ctimes%209%20%5Ctimes%208%20%5Ctimes%207%20%5Ctimes%206%7D%7B5%20%5Ctimes%204%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%201%7D%3D%5Cleft%28%5Cfrac%7B30240%7D%7B120%7D%5Cright%29%3D252)
The coefficient of ![x^{5} \times y^{5} \text { is }=\left(252 \times 2^{5} \times(-3)^{5}\right)=252 \times 32 \times 243=1959552](https://tex.z-dn.net/?f=x%5E%7B5%7D%20%5Ctimes%20y%5E%7B5%7D%20%5Ctext%20%7B%20is%20%7D%3D%5Cleft%28252%20%5Ctimes%202%5E%7B5%7D%20%5Ctimes%28-3%29%5E%7B5%7D%5Cright%29%3D252%20%5Ctimes%2032%20%5Ctimes%20243%3D1959552)
$0.70 per candy.
$78 divided by 112 gives $0.696, so by rounding off, you get 0.70
Do you mean 'nine and eighty four hundredths' in standard form? If so, it will be:
9.84